Nginx事件驱动框架处理流程是什么
这篇文章主要介绍“Nginx事件驱动框架处理流程是什么”,在日常操作中,相信很多人在Nginx事件驱动框架处理流程是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Nginx事件驱动框架处理流程是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
ngx_event_core_module模块的ngx_event_process_init方法对事件模块做了一些初始化。其中包括将“请求连接”这样一个读事件对应的处理方法(handler)设置为ngx_event_accept函数,并将此事件添加到epoll模块中。当有新连接事件发生时,ngx_event_accept就会被调用。大致流程是这样:
worker进程在ngx_worker_process_cycle方法中不断循环调用ngx_process_events_and_timers函数处理事件,这个函数是事件处理的总入口。
ngx_process_events_and_timers会调用ngx_process_events,这是一个宏,相当于ngx_event_actions.process_events,ngx_event_actions是个全局的结构体,存储了对应事件驱动模块(这里是epoll模块)的10个函数接口。所以这里就是调用了ngx_epoll_module_ctx.actions.process_events函数,也就是ngx_epoll_process_events函数来处理事件。
ngx_epoll_process_events调用linux函数接口epoll_wait获得“有新连接”这个事件,然后调用这个事件的handler处理函数来对这个事件进行处理。
在上面已经说过handler已经被设置成了ngx_event_accept函数,所以就调用ngx_event_accept进行实际的处理。
下面分析ngx_event_accept方法,它的流程图如下所示:
经过精简的代码如下,注释中的序号对应上图的序号:
void ngx_event_accept(ngx_event_t *ev) { socklen_t socklen; ngx_err_t err; ngx_log_t *log; ngx_uint_t level; ngx_socket_t s; ngx_event_t *rev, *wev; ngx_listening_t *ls; ngx_connection_t *c, *lc; ngx_event_conf_t *ecf; u_char sa[ngx_sockaddrlen]; if (ev->timedout) { if (ngx_enable_accept_events((ngx_cycle_t *) ngx_cycle) != ngx_ok) { return; } ev->timedout = 0; } ecf = ngx_event_get_conf(ngx_cycle->conf_ctx, ngx_event_core_module); if (ngx_event_flags & ngx_use_rtsig_event) { ev->available = 1; } else if (!(ngx_event_flags & ngx_use_kqueue_event)) { ev->available = ecf->multi_accept; } lc = ev->data; ls = lc->listening; ev->ready = 0; do { socklen = ngx_sockaddrlen; /* 1、accept方法试图建立连接,非阻塞调用 */ s = accept(lc->fd, (struct sockaddr *) sa, &socklen); if (s == (ngx_socket_t) -1) { err = ngx_socket_errno; if (err == ngx_eagain) { /* 没有连接,直接返回 */ return; } level = ngx_log_alert; if (err == ngx_econnaborted) { level = ngx_log_err; } else if (err == ngx_emfile || err == ngx_enfile) { level = ngx_log_crit; } if (err == ngx_econnaborted) { if (ngx_event_flags & ngx_use_kqueue_event) { ev->available--; } if (ev->available) { continue; } } if (err == ngx_emfile || err == ngx_enfile) { if (ngx_disable_accept_events((ngx_cycle_t *) ngx_cycle) != ngx_ok) { return; } if (ngx_use_accept_mutex) { if (ngx_accept_mutex_held) { ngx_shmtx_unlock(&ngx_accept_mutex); ngx_accept_mutex_held = 0; } ngx_accept_disabled = 1; } else { ngx_add_timer(ev, ecf->accept_mutex_delay); } } return; } /* 2、设置负载均衡阈值 */ ngx_accept_disabled = ngx_cycle->connection_n / 8 - ngx_cycle->free_connection_n; /* 3、从连接池获得一个连接对象 */ c = ngx_get_connection(s, ev->log); /* 4、为连接创建内存池 */ c->pool = ngx_create_pool(ls->pool_size, ev->log); c->sockaddr = ngx_palloc(c->pool, socklen); ngx_memcpy(c->sockaddr, sa, socklen); log = ngx_palloc(c->pool, sizeof(ngx_log_t)); /* set a blocking mode for aio and non-blocking mode for others */ /* 5、设置套接字属性为阻塞或非阻塞 */ if (ngx_inherited_nonblocking) { if (ngx_event_flags & ngx_use_aio_event) { if (ngx_blocking(s) == -1) { ngx_log_error(ngx_log_alert, ev->log, ngx_socket_errno, ngx_blocking_n " failed"); ngx_close_accepted_connection(c); return; } } } else { if (!(ngx_event_flags & (ngx_use_aio_event|ngx_use_rtsig_event))) { if (ngx_nonblocking(s) == -1) { ngx_log_error(ngx_log_alert, ev->log, ngx_socket_errno, ngx_nonblocking_n " failed"); ngx_close_accepted_connection(c); return; } } } *log = ls->log; c->recv = ngx_recv; c->send = ngx_send; c->recv_chain = ngx_recv_chain; c->send_chain = ngx_send_chain; c->log = log; c->pool->log = log; c->socklen = socklen; c->listening = ls; c->local_sockaddr = ls->sockaddr; c->local_socklen = ls->socklen; c->unexpected_eof = 1; rev = c->read; wev = c->write; wev->ready = 1; if (ngx_event_flags & (ngx_use_aio_event|ngx_use_rtsig_event)) { /* rtsig, aio, iocp */ rev->ready = 1; } if (ev->deferred_accept) { rev->ready = 1; } rev->log = log; wev->log = log; /* * todo: mt: - ngx_atomic_fetch_add() * or protection by critical section or light mutex * * todo: mp: - allocated in a shared memory * - ngx_atomic_fetch_add() * or protection by critical section or light mutex */ c->number = ngx_atomic_fetch_add(ngx_connection_counter, 1); if (ls->addr_ntop) { c->addr_text.data = ngx_pnalloc(c->pool, ls->addr_text_max_len); if (c->addr_text.data == null) { ngx_close_accepted_connection(c); return; } c->addr_text.len = ngx_sock_ntop(c->sockaddr, c->socklen, c->addr_text.data, ls->addr_text_max_len, 0); if (c->addr_text.len == 0) { ngx_close_accepted_connection(c); return; } } /* 6、将新连接对应的读写事件添加到epoll对象中 */ if (ngx_add_conn && (ngx_event_flags & ngx_use_epoll_event) == 0) { if (ngx_add_conn(c) == ngx_error) { ngx_close_accepted_connection(c); return; } } log->data = null; log->handler = null; /* 7、tcp建立成功调用的方法,这个方法在ngx_listening_t结构体中 */ ls->handler(c); } while (ev->available); /* available标志表示一次尽可能多的建立连接,由配置项multi_accept决定 */ }
nginx中的“惊群”问题
nginx一般会运行多个worker进程,这些进程会同时监听同一端口。当有新连接到来时,内核将这些进程全部唤醒,但只有一个进程能够和客户端连接成功,导致其它进程在唤醒时浪费了大量开销,这被称为“惊群”现象。nginx解决“惊群”的方法是,让进程获得互斥锁ngx_accept_mutex,让进程互斥地进入某一段临界区。在该临界区中,进程将它所要监听的连接对应的读事件添加到epoll模块中,使得当有“新连接”事件发生时,该worker进程会作出反应。这段加锁并添加事件的过程是在函数ngx_trylock_accept_mutex中完成的。而当其它进程也进入该函数想要添加读事件时,发现互斥锁被另外一个进程持有,所以它只能返回,它所监听的事件也无法添加到epoll模块,从而无法响应“新连接”事件。但这会出现一个问题:持有互斥锁的那个进程在什么时候释放互斥锁呢?如果需要等待它处理完所有的事件才释放锁的话,那么会需要相当长的时间。而在这段时间内,其它worker进程无法建立新连接,这显然是不可取的。nginx的解决办法是:通过ngx_trylock_accept_mutex获得了互斥锁的进程,在获得就绪读/写事件并从epoll_wait返回后,将这些事件归类放入队列中:
新连接事件放入ngx_posted_accept_events队列
已有连接事件放入ngx_posted_events队列
代码如下:
if (flags & ngx_post_events) { /* 延后处理这批事件 */ queue = (ngx_event_t **) (rev->accept ? &ngx_posted_accept_events : &ngx_posted_events); /* 将事件添加到延后执行队列中 */ ngx_locked_post_event(rev, queue); } else { rev->handler(rev); /* 不需要延后,则立即处理事件 */ }
写事件做类似处理。进程接下来处理ngx_posted_accept_events队列中的事件,处理完后立即释放互斥锁,使该进程占用锁的时间降到了最低。
nginx中的负载均衡问题
nginx中每个进程使用了一个处理负载均衡的阈值ngx_accept_disabled,它在上图的第2步中被初始化:
ngx_accept_disabled = ngx_cycle->connection_n / 8 - ngx_cycle->free_connection_n;
它的初值为一个负数,该负数的绝对值等于总连接数的7/8.当阈值小于0时正常响应新连接事件,当阈值大于0时不再响应新连接事件,并将ngx_accept_disabled减1,代码如下:
if (ngx_accept_disabled > 0) { ngx_accept_disabled--; } else { if (ngx_trylock_accept_mutex(cycle) == ngx_error) { return; } .... }
这说明,当某个进程当前的连接数达到能够处理的总连接数的7/8时,负载均衡机制被触发,进程停止响应新连接。
到此,关于“Nginx事件驱动框架处理流程是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注蜗牛博客网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:niceseo99@gmail.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
评论