Python PIL图片怎么按比例裁剪
这篇文章主要介绍“Python PIL图片怎么按比例裁剪”,在日常操作中,相信很多人在Python PIL图片怎么按比例裁剪问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python PIL图片怎么按比例裁剪”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
PIL图片如何按比例裁剪
问题描述
如图片比例为 1:1 裁剪为 4:3
1.jpg
解决方案
from PIL import Image def image_clip(filename, savename, width_scale, height_scale): """图像裁剪 :param filename: 原图路径 :param savename: 保存图片路径 :param width_scale: 宽的比例 :param height_scale: 高的比例 """ image = Image.open(filename) (width, height), (_width, _height) = image.size, image.size _height = width / width_scale * height_scale if _height > height: _height = height _width = width_scale * height / height_scale image.crop((0, 0, _width, _height)).save(savename) # 左上角 # image.crop((0, height - _height, _width, height)).save(savename) # 左下角 # image.crop((width - _width, 0, width, _height)).save(savename) # 右上角 # image.crop((width - _width, height - _height, width, height)).save(savename) # 右下角 if __name__ == '__main__': filename = '1.jpg' savename = 'result.jpg' image_clip(filename, savename, width_scale=4, height_scale=3) # image_clip(filename, savename, width_scale=3, height_scale=4)
效果
PIL调整图片大小
使用 PIL 在图片比例不变的情况下修改图片大小。
介绍
Image.resize
def resize(self, size, resample=BICUBIC, box=None, reducing_gap=None): """ Returns a resized copy of this image. 返回此图像的大小调整后的副本。 :param size: The requested size in pixels, as a 2-tuple: (width, height). param size: 请求的大小(以像素为单位),是一个二元数组:(width, height) :param resample: An optional resampling filter. This can be one of :py:attr:`PIL.Image.NEAREST`, :py:attr:`PIL.Image.BOX`, :py:attr:`PIL.Image.BILINEAR`, :py:attr:`PIL.Image.HAMMING`, :py:attr:`PIL.Image.BICUBIC` or :py:attr:`PIL.Image.LANCZOS`. Default filter is :py:attr:`PIL.Image.BICUBIC`. If the image has mode "1" or "P", it is always set to :py:attr:`PIL.Image.NEAREST`. See: :ref:`concept-filters`. param resample: 一个可选的重采样过滤器。 :param box: An optional 4-tuple of floats providing the source image region to be scaled. The values must be within (0, 0, width, height) rectangle. If omitted or None, the entire source is used. param box: 可选的4元浮点数,提供要缩放的源映像区域。 :param reducing_gap: Apply optimization by resizing the image in two steps. First, reducing the image by integer times using :py:meth:`~PIL.Image.Image.reduce`. Second, resizing using regular resampling. The last step changes size no less than by ``reducing_gap`` times. ``reducing_gap`` may be None (no first step is performed) or should be greater than 1.0. The bigger ``reducing_gap``, the closer the result to the fair resampling. The smaller ``reducing_gap``, the faster resizing. With ``reducing_gap`` greater or equal to 3.0, the result is indistinguishable from fair resampling in most cases. The default value is None (no optimization). param reducing_gap: 通过两个步骤调整图像大小来应用优化。 :returns: An :py:class:`~PIL.Image.Image` object. returns: 返回一个 PIL.Image.Image 对象 """
看代码吧
from PIL import Image image = Image.open('图片路径') # 调整图片大小,并保持比例不变 # 给定一个基本宽度 base_width = 50 # 基本宽度与原图宽度的比例 w_percent = base_width / float(image.size[0]) # 计算比例不变的条件下新图的长度 h_size = int(float(image.size[1]) * float(w_percent)) # 重新设置大小 # 默认情况下,PIL使用Image.NEAREST过滤器进行大小调整,从而获得良好的性能,但质量很差。 image = image.resize((base_width, h_size), Image.ANTIALIAS)
到此,关于“Python PIL图片怎么按比例裁剪”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注蜗牛博客网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:niceseo99@gmail.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。版权声明:如无特殊标注,文章均为本站原创,转载时请以链接形式注明文章出处。
评论