Python缺失值如何处理

这篇文章主要介绍了Python缺失值如何处理的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Python缺失值如何处理文章都会有所收获,下面我们一起来看看吧。

先构建一个含有缺失值的DataFrame,如下:

import pandas as pd
import numpy as np
data = pd.DataFrame([[1,np.nan,3],[np.nan,5,np.nan]],columns = ['a','b','c'])
print(data)

看出来了吗?np.nan就是NAN值,空值的意思。

Python缺失值如何处理  python 第1张

在numpy中有一个函数可以用来查看空值,不对,是两个,isnull()和isna()这两函数。

我们分别来试试它们的效果:

import pandas as pd
import numpy as np
data = pd.DataFrame([[1,np.nan,3],[np.nan,5,np.nan]],columns = ['a','b','c'])
data.isnull()
data.isna()

可以看出,这两函数的作用就是判断数据是不是空值,如果是,就返回true,不是就是false。

Python缺失值如何处理  python 第2张

通常,对空值的处理有两种方法,一种就是把空值删除,另外一种就是把它填上,我们先说第一种,删除空值,我们可以dropna()这一函数来把空值删除。要注意,它会把含有空值的整行都删掉。例如:

import pandas as pd
import numpy as np
data = pd.DataFrame([[1,np.nan,3],[np.nan,5,np.nan]],columns = ['a','b','c'])
data.dropna()

上面的例子用了drop函数后,啥都没啦! 

Python缺失值如何处理  python 第3张

我们可以设置当每行空值多余2个时再删除(低于2个保留),这时候要用到dropna()的参数thresh。

补充空值的话有挺多的方法,有用均值补充,中位数补充等,我们要用到fillna()这一函数。例如,我们用均值来填充上文中的data,

代码如下:

import pandas as pd
import numpy as np
data = pd.DataFrame([[1,np.nan,3],[np.nan,5,np.nan]],columns = ['a','b','c'])
data.fillna(data.mean())

代码运行的结果如下,可以看到空值都被对应列的均值所填充。

Python缺失值如何处理  python 第4张

关于“Python缺失值如何处理”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“Python缺失值如何处理”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注蜗牛博客行业资讯频道。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:niceseo99@gmail.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

评论

有免费节点资源,我们会通知你!加入纸飞机订阅群

×
天气预报查看日历分享网页手机扫码留言评论Telegram