怎么用Python读取千万级数据自动写入MySQL数据库

蜗牛 互联网技术资讯 2022-06-29 149 0

这篇文章主要介绍“怎么用Python读取千万级数据自动写入MySQL数据库”,在日常操作中,相信很多人在怎么用Python读取千万级数据自动写入MySQL数据库问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么用Python读取千万级数据自动写入MySQL数据库”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

场景一:数据不需要频繁的写入mysql

使用 navicat 工具的导入向导功能。支持多种文件格式,可以根据文件的字段自动建表,也可以在已有表中插入数据,非常快捷方便。

怎么用Python读取千万级数据自动写入MySQL数据库  python 第1张

怎么用Python读取千万级数据自动写入MySQL数据库  python 第2张

场景二:数据是增量的,需要自动化并频繁写入mysql

测试数据:csv 格式 ,大约 1200万行

import pandas as pd
data = pd.read_csv('./tianchi_mobile_recommend_train_user.csv')
data.shape

打印结果:

怎么用Python读取千万级数据自动写入MySQL数据库  python 第3张

方式一:python ➕ pymysql 库

安装 pymysql 命令:

pip install pymysql

代码实现:

import pymysql
# 数据库连接信息
conn = pymysql.connect(
       host='127.0.0.1',
       user='root',
       passwd='wangyuqing',
       db='test01',
       port = 3306,
       charset="utf8")
# 分块处理
big_size = 100000
# 分块遍历写入到 mysql
with pd.read_csv('./tianchi_mobile_recommend_train_user.csv',chunksize=big_size) as reader:
    for df in reader:
        datas = []
        print('处理:',len(df))
#         print(df)
        for i ,j in df.iterrows():
            data = (j['user_id'],j['item_id'],j['behavior_type'],
                    j['item_category'],j['time'])
            datas.append(data)
        _values = ",".join(['%s', ] * 5)
        sql = """insert into users(user_id,item_id,behavior_type
        ,item_category,time) values(%s)""" % _values
        cursor = conn.cursor()
        cursor.executemany(sql,datas)
        conn.commit()
 # 关闭服务
conn.close()
cursor.close()
print('存入成功!')

怎么用Python读取千万级数据自动写入MySQL数据库  python 第4张

方式二:pandas ➕ sqlalchemy:pandas需要引入sqlalchemy来支持sql,在sqlalchemy的支持下,它可以实现所有常见数据库类型的查询、更新等操作。

代码实现:

from sqlalchemy import create_engine
engine = create_engine('mysql+pymysql://root:wangyuqing@localhost:3306/test01')
data = pd.read_csv('./tianchi_mobile_recommend_train_user.csv')
data.to_sql('user02',engine,chunksize=100000,index=None)
print('存入成功!')

总结

pymysql 方法用时12分47秒,耗时还是比较长的,代码量大,而 pandas 仅需五行代码就实现了这个需求,只用了4分钟左右。最后补充下,方式一需要提前建表,方式二则不需要。所以推荐大家使用第二种方式,既方便又效率高。如果还觉得速度慢的小伙伴,可以考虑加入多进程、多线程。

最全的三种将数据存入到 MySQL 数据库方法:

  • 直接存,利用 navicat 的导入向导功能

  • Python pymysql

  • Pandas sqlalchemy

到此,关于“怎么用Python读取千万级数据自动写入MySQL数据库”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注蜗牛博客网站,小编会继续努力为大家带来更多实用的文章!

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:niceseo99@gmail.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

评论

有免费节点资源,我们会通知你!加入纸飞机订阅群

×
天气预报查看日历分享网页手机扫码留言评论Telegram