Netty与NIO怎么使用
这篇文章主要介绍“Netty与NIO怎么使用”,在日常操作中,相信很多人在Netty与NIO怎么使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Netty与NIO怎么使用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
Linux下的五种I/O模型
1)阻塞I/O(blocking I/O)
2)非阻塞I/O (nonblocking I/O)
3) I/O复用(select 和poll) (I/O multiplexing)
4)信号驱动I/O (signal driven I/O (SIGIO))
5)异步I/O (asynchronous I/O (the POSIX aio_functions))
前面四种都是同步io、第五种是异步IO;
阻塞式:当程序没有获取到数据的时候,整个应用可能会产生阻塞,放弃了CPU执行,无法去做其他事情。
非阻塞式:不管有没有获取到数据,都必须立马返回一个结果,如果没有获取到数据的情况下返回一个错误标记,根据错误的标记不断轮询。BIO属于阻塞式的io操作。可以使用多线程实现异步I0,同时处理多个请求。缺点:非常消耗服务器资源CPU
阻塞IO的流程
BIO属于阻塞式的io操作。
可以使用多线程实现异步IO,同时处理多个请求。缺点:非常消耗服务器资源CPU
当我们在调用一个io函数的时候,如果没有获取到数据的情况下,那么就会一直等待;等待的过程中会导致整个应用程序一直是一个阻塞的过程,无法去做其他的实现。
IO复用
IO复用机制:IO实际指的就是网络的IO、多路也就是多个不同的tcp连接;复用也就是指使用同一个线程合并处理多个不同的IO操作,这样的话可以减少CPU资源。
信号驱动I/O
发出一个请求实现观察监听,当有数据的时候直接走我们异步回调;
异步IO
异步io也就是发出请求数据之后,剩下的事情完全实现异步完成
同步与异步
站在多线程的角度总结:
同步整个应用代码执行顺序是从上往下执行 并且返回到结果;
异步:开启多个不同的分支实现并行执行 每个线程互不影响;
站在web项目角度分析
默认的情况Http请求就是一个同步形式实现调用 基于请求与响应,如果我们响应非常耗时的话,会导致客户端一直等待(用户体验非常不好)
NIO
Java的nio是在Jdk1.4版本之后推出了一套新的io方案,这种io方案对原有io做了一次性能上的升级
NIO翻译成英文 no blocking io 简称为 nio 非阻塞io,不是new io。
比传统的io支持了面向缓冲区、基于通道实现的io的方案。
BIO 与 NIO 区别:
Bio是一个阻塞式的io,它是西向与流传输也就是根据每个字节实现传输效率非常低,
而我们的nio是雨向与缓冲区的非阻塞边.其中最大的亮点:运多路复用机制,
I0多路复用
多路实际上指的是多个不同的 tcp 连接。
复用:一个线程可以维护多个不同的io操作。
优点:占用cpu资源非常小、保证线程安全问题。
IO 多路复用实现原理
使用一个Java案例来描述IO多路复用的思路:
public class SocketNioTcpServer { private static List<SocketChannel> listSocketChannel = new ArrayList<>(); private static ByteBuffer byteBuffer = ByteBuffer.allocate(512); public static void main(String[] args) { try { // 1.创建一个ServerSocketChannel ServerSocketChannel serverSocketChannel = ServerSocketChannel.open(); // 2. 绑定地址 ServerSocketChannel bind = serverSocketChannel.bind(new InetSocketAddress(8080)); serverSocketChannel.configureBlocking(false); while (true) { SocketChannel socketChannel = serverSocketChannel.accept(); if (socketChannel != null) { socketChannel.configureBlocking(false); listSocketChannel.add(socketChannel); } for (SocketChannel scl : listSocketChannel) { try { int read = scl.read(byteBuffer); if (read > 0) { byteBuffer.flip(); Charset charset = Charset.forName("UTF-8"); String receiveText = charset.newDecoder().decode (byteBuffer.asReadOnlyBuffer()).toString(); System.out.println("receiveText:" + receiveText); } } catch (Exception e) { e.printStackTrace(); } } } } catch (Exception e) { e.printStackTrace(); } } }
NIO核心组件
通道(Channel)
通常我们nio所有的操作都是通过通道开始的,所有的通道都会注册到统一个选择器(Selector)上实现管理,在通过选择器将数据统一写入到 buffer中。
缓冲区(Buffer)
Buffer本质上就是一块内存区,可以用来读取数据,也就先将数据写入到缓冲区中、在统一的写入到硬盘上。
选择器(Selector)
Selector可以称做为选择器,也可以把它叫做多路复用器,可以在单线程的情况下可以去维护多个Channel,也可以去维护多个连接;
使用Java原生API实现NIO操作
public class NIOServer { /** * 创建一个选择器 */ private Selector selector; public void initServer(int port) throws IOException { // 获得一个ServerSocketChannel通道 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open(); // 设置通道为非阻塞 serverSocketChannel.configureBlocking(false); // 将该通道对应的ServerSocket绑定到port端口 serverSocketChannel.bind(new InetSocketAddress(port)); // 获得一个通道管理器 this.selector = Selector.open(); // 将通道管理器和该通道绑定,并为该通道注册SelectionKey.OP_ACCEPT事件,注册该事件后, // 当该事件到达时,selector.select()会返回,如果该事件没到达selector.select()会一直阻塞。 serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT); } public void listen() throws IOException { System.out.println("服务端启动成功!"); // 轮询访问selector while (true) { // 当注册的事件到达时,方法返回;否则,该方法会一直阻塞 int select = selector.select(); if (select == 0) { continue; } // 获得selector中选中的项的迭代器,选中的项为注册的事件 Iterator<SelectionKey> ite = this.selector.selectedKeys().iterator(); while (ite.hasNext()) { SelectionKey key = (SelectionKey) ite.next(); // 删除已选的key,以防重复处理 ite.remove(); if (key.isAcceptable()) {// 客户端请求连接事件 ServerSocketChannel server = (ServerSocketChannel) key.channel(); // 获得和客户端连接的通道 SocketChannel channel = server.accept(); // 设置成非阻塞 channel.configureBlocking(false); // 在和客户端连接成功之后,为了可以接收到客户端的信息,需要给通道设置读的权限。 channel.register(this.selector, SelectionKey.OP_READ); } else if (key.isReadable()) {// 获得了可读的事件 read(key); } } } } public void read(SelectionKey key) throws IOException { // 服务器可读取消息:得到事件发生的Socket通道 SocketChannel channel = (SocketChannel) key.channel(); // 创建读取的缓冲区 ByteBuffer buffer = ByteBuffer.allocate(512); channel.read(buffer); byte[] data = buffer.array(); String msg = new String(data).trim(); System.out.println("服务端收到信息:" + msg); ByteBuffer outBuffer = ByteBuffer.wrap(msg.getBytes("utf-8")); channel.write(outBuffer);// 将消息回送给客户端 } public static void main(String[] args) throws IOException { NIOServer server = new NIOServer(); server.initServer(8000); server.listen(); } }
Redis为什么支持高并发
Redis官方没有windows版本redis,只有linux版本的reids。
Redis的底层是采用nio 多路io复用机制实现对多个不同的连接(tcp)实现io的复用;能够非常好的支持高并发,同时能够先天性支持线程安全的问题。为什么现场安全?因为使用一个线程维护多个不同的io操作 原理使用nio的选择器,将多个不同的Channel统一交给我们的selector(选择器管理)。
但是nio的实现在不同的操作系统上存在差别:在我们windows操作系统上使用 select 实现轮训机制、在linux操作系统使用epoll
备注:windows操作系统是没有epoll
在windows操作系统中使用select实现轮训机制时间复杂度是为 o(n),而且这种情况也会存在空轮训的情况,效率非常低、其次默认对我们的轮训有一定限制,所以这样的话很难支持上万tcp连接。
所以在这时候linux操作就出现epoll实现事件驱动回调形式通知,不会存在空轮训的情况,只是对活跃的socket实现主动回调,这样的性能有很大的提升 所以时间复杂度为是o(1)
注意:windows操作系统没有epoll、只有linux操作系统有。
所以为什么Nginx、redis能够支持非常高的并发 最终都是靠的linux版本的 io 多路复用机制epoll
到此,关于“Netty与NIO怎么使用”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注蜗牛博客网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:niceseo99@gmail.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
评论