什么是AI服务器?与普通服务器有什么区别?
深度学习的三大要素是数据、算法和计算力,其中数据是基础,算法是工具,计算力是助推器,计算力的提高推动者深度学习的发展,深度学习之前发展缓慢,除了算法的原因外,很重要的一个原因是计算能力的不足,解决计算力最重要的支撑是AI服务器(这里主要指通用的AI服务器,GPU服务器)。随着大数据、云计算、人工智能等技术的成熟与在各行各业的应用,在人工智能时代,AI服务器这个新兴名词也频繁地出现在人们的视线范围内,有人预测在人工智能时代,AI服务器将会广泛的应用于各个行业。相关阅读:AI服务器的定义、优势及市场现状
什么是AI服务器?
从硬件架构来看,AI服务器主要指的是采用异构形式的服务器,表现形态多为机架式。在异构方式上,可以为CPU+GPU、CPU+FPGA、CPU+TPU、CPU+ASIC或CPU+多种加速卡。
而在其他组成部件上,如内存模块、存储模块、网络模块与传统服务器差别不大,主要的提升便是支持更大容量的内存满足当下实时负载增加的需求,提供更多外置硬盘插槽,并广泛支持NVME/PCIE等SSD,满足数据洪流需求,网络模块主要表现为带宽增加。
尽管AI服务器可以采用多种异构形式,但目前广泛使用的是CPU+GPU。也因此,业界在谈到AI服务器时,往往将其默认为GPU服务器。
AI服务器与普通服务器有什么区别呢?
1、从服务器的硬件架构来看,AI服务器是采用异构形式的服务器,在异构方式上可以根据应用的范围采用不同的组合方式,如CPU+GPU、CPU+TPU、CPU+其他的加速卡等。与普通的服务器相比较,在内存、存储、网络方面没有什么差别,主要在是大数据及云计算、人工智能等方面需要更大的内外存,满足各种数据的收集与整理。
2、卡的数量不一致:普通的GPU服务器一般是单卡或者双卡,AI服务器需要承担大量的计算,一般配置四块GPU卡以上,甚至要搭建AI服务器集群。
3、独特设计:AI服务器由于有了多个GPU卡,需要针对性的对于系统结构、散热、拓扑等做专门的设计,才能满足AI服务器长期稳定运行的要求。天 下 数据电话4006-388-808 官网:www.IdCbest.Com。
AI服务器有哪些应用场景?
基于AI服务器的优势,AI服务器在医疗、搜索引擎、游戏、电商、金融、安防等行业有着广泛的应用。
1、医疗影像智能分析场景:通过机器视觉、知识图谱、深度学习等人工智能技术,模拟医疗专家思维,推理整断,帮助医生定位病情,辅助做出诊断。
2、人脸识别、语音识别、指纹识别场景:通过深度学习、机器学习等技术,可实现图片,视频等图像资料训练。
3、安防监控场景:利用知识图谱技术、深度学习等技术,可以应用到人体分析、图像分析、车辆分析、行为分析等安防场景中。
4、零售预测场景:通过机器学习,基于门店历史销售数据,可以精准的对未来销售进行预测,为经营者提供更准确的决策分析。此外,在零售行业中,常见的还有无人售卖、人脸支付等应用场景。
5、金融服务场景:通过语音、唇形、表情合成技术和深度学习等技术,克隆出与真实面审员一样AI视频面审员,可以准确无误的与客户进行多轮面谈。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:niceseo99@gmail.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
评论