Python Pandas怎么修改表格数据类型DataFrame列的顺序

本篇内容主要讲解“Python Pandas怎么修改表格数据类型DataFrame列的顺序”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python Pandas怎么修改表格数据类型DataFrame列的顺序”吧!

一、修改表格数据类型 DataFrame 列的顺序

1.2创建 python 文件

import numpy as np
import pandas as pd

np.random.seed(66)
df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD'))
print(df)
df = df[["D", "A", "B", "C"]]
print(df)

1.3运行结果 

          A         B         C         D
0  0.154288  0.133700  0.362685  0.679109
1  0.194450  0.251210  0.758416  0.557619
2  0.514803  0.467800  0.087176  0.829095
3  0.298641  0.031346  0.678006  0.903489
4  0.514451  0.539105  0.664328  0.634057
5  0.353419  0.026643  0.165290  0.879319
6  0.067820  0.369086  0.115501  0.096294
7  0.083770  0.086927  0.022256  0.771043
8  0.049213  0.465223  0.941233  0.216512
9  0.361318  0.031319  0.304045  0.188268
          D         A         B         C
0  0.679109  0.154288  0.133700  0.362685
1  0.557619  0.194450  0.251210  0.758416
2  0.829095  0.514803  0.467800  0.087176
3  0.903489  0.298641  0.031346  0.678006
4  0.634057  0.514451  0.539105  0.664328
5  0.879319  0.353419  0.026643  0.165290
6  0.096294  0.067820  0.369086  0.115501
7  0.771043  0.083770  0.086927  0.022256
8  0.216512  0.049213  0.465223  0.941233
9  0.188268  0.361318  0.031319  0.304045

二、Pandas 如何统计某个数据列的空值个数

2.2创建 python 文件

"""
对如下DF,设置两个单元格的值
·使用iloc 设置(3,B)的值是nan
·使用loc设置(8,D)的值是nan
"""
import numpy as np
import pandas as pd
np.random.seed(66)
df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD'))
df.iloc[3, 1] = np.nan
df.loc[8, 'D'] = np.nan
print(df)
print(df.isnull().sum())

2.3运行结果

          A         B         C         D
0  0.154288  0.133700  0.362685  0.679109
1  0.194450  0.251210  0.758416  0.557619
2  0.514803  0.467800  0.087176  0.829095
3  0.298641       NaN  0.678006  0.903489
4  0.514451  0.539105  0.664328  0.634057
5  0.353419  0.026643  0.165290  0.879319
6  0.067820  0.369086  0.115501  0.096294
7  0.083770  0.086927  0.022256  0.771043
8  0.049213  0.465223  0.941233       NaN
9  0.361318  0.031319  0.304045  0.188268
A    0
B    1
C    0
D    1
dtype: int64

三、Pandas如何移除包含空值的行

3.2创建 python 文件

"""
对如下DF,设置两个单元格的值
·使用iloc 设置(3,B)的值是nan
·使用loc设置(8,D)的值是nan
"""
import numpy as np
import pandas as pd
 
np.random.seed(66)
df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD'))
df.iloc[3, 1] = np.nan
df.loc[8, 'D'] = np.nan
print(df)
df2 = df.dropna()
print(df2)

3.3运行结果

          A         B         C         D
0  0.154288  0.133700  0.362685  0.679109
1  0.194450  0.251210  0.758416  0.557619
2  0.514803  0.467800  0.087176  0.829095
3  0.298641       NaN  0.678006  0.903489
4  0.514451  0.539105  0.664328  0.634057
5  0.353419  0.026643  0.165290  0.879319
6  0.067820  0.369086  0.115501  0.096294
7  0.083770  0.086927  0.022256  0.771043
8  0.049213  0.465223  0.941233       NaN
9  0.361318  0.031319  0.304045  0.188268
          A         B         C         D
0  0.154288  0.133700  0.362685  0.679109
1  0.194450  0.251210  0.758416  0.557619
2  0.514803  0.467800  0.087176  0.829095
4  0.514451  0.539105  0.664328  0.634057
5  0.353419  0.026643  0.165290  0.879319
6  0.067820  0.369086  0.115501  0.096294
7  0.083770  0.086927  0.022256  0.771043
9  0.361318  0.031319  0.304045  0.188268

四、Pandas如何精确设置表格数据的单元格的值

4.2创建 python 文件

"""
对如下DF,设置两个单元格的值
·使用iloc 设置(3,B)的值是nan
·使用loc设置(8,D)的值是nan
"""
import numpy as np
import pandas as pd
np.random.seed(66)
df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD'))
print(df)
 
df.iloc[3, 1] = np.nan
df.loc[8, 'D'] = np.nan
 
print(df)

4.3运行结果 

          A         B         C         D
0  0.154288  0.133700  0.362685  0.679109
1  0.194450  0.251210  0.758416  0.557619
2  0.514803  0.467800  0.087176  0.829095
3  0.298641  0.031346  0.678006  0.903489
4  0.514451  0.539105  0.664328  0.634057
5  0.353419  0.026643  0.165290  0.879319
6  0.067820  0.369086  0.115501  0.096294
7  0.083770  0.086927  0.022256  0.771043
8  0.049213  0.465223  0.941233  0.216512
9  0.361318  0.031319  0.304045  0.188268
          A         B         C         D
0  0.154288  0.133700  0.362685  0.679109
1  0.194450  0.251210  0.758416  0.557619
2  0.514803  0.467800  0.087176  0.829095
3  0.298641       NaN  0.678006  0.903489
4  0.514451  0.539105  0.664328  0.634057
5  0.353419  0.026643  0.165290  0.879319
6  0.067820  0.369086  0.115501  0.096294
7  0.083770  0.086927  0.022256  0.771043
8  0.049213  0.465223  0.941233       NaN
9  0.361318  0.031319  0.304045  0.188268 

到此,相信大家对“Python Pandas怎么修改表格数据类型DataFrame列的顺序”有了更深的了解,不妨来实际操作一番吧!这里是蜗牛博客网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:niceseo99@gmail.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

评论

有免费节点资源,我们会通知你!加入纸飞机订阅群

×
天气预报查看日历分享网页手机扫码留言评论Telegram