Redis与MySQL双写一致性怎么保证

蜗牛 互联网技术资讯 2023-02-15 68 0

这篇文章主要介绍了Redis与MySQL双写一致性怎么保证的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Redis与MySQL双写一致性怎么保证文章都会有所收获,下面我们一起来看看吧。

.markdown-body{word-break:break-word;line-height:1.75;font-weight:400;font-size:16px;overflow-x:hidden;color:#252933}.markdown-body h2,.markdown-body h3,.markdown-body h4,.markdown-body h5,.markdown-body h6,.markdown-body h7{line-height:1.5;margin-top:35px;margin-bottom:10px;padding-bottom:5px}.markdown-body h2{font-size:24px;line-height:38px;margin-bottom:5px}.markdown-body h3{font-size:22px;line-height:34px;padding-bottom:12px;border-bottom:1px solid #ececec}.markdown-body h4{font-size:20px;line-height:28px}.markdown-body h5{font-size:18px;line-height:26px}.markdown-body h6{font-size:17px;line-height:24px}.markdown-body h7{font-size:16px;line-height:24px}.markdown-body p{line-height:inherit;margin-top:22px;margin-bottom:22px}.markdown-body img{max-width:100%}.markdown-body hr{border:none;border-top:1px solid #ddd;margin-top:32px;margin-bottom:32px}.markdown-body code{word-break:break-word;border-radius:2px;overflow-x:auto;background-color:#fff5f5;color:#ff502c;font-size:.87em;padding:.065em .4em}.markdown-body code,.markdown-body pre{font-family:Menlo,Monaco,Consolas,Courier New,monospace}.markdown-body pre{overflow:auto;position:relative;line-height:1.75}.markdown-body pre>code{font-size:12px;padding:15px 12px;margin:0;word-break:normal;display:block;overflow-x:auto;color:#333;background:#f8f8f8}.markdown-body a{text-decoration:none;color:#0269c8;border-bottom:1px solid #d1e9ff}.markdown-body a:active,.markdown-body a:hover{color:#275b8c}.markdown-body table{display:inline-block!important;font-size:12px;width:auto;max-width:100%;overflow:auto;border:1px solid #f6f6f6}.markdown-body thead{background:#f6f6f6;color:#000;text-align:left}.markdown-body tr:nth-child(2n){background-color:#fcfcfc}.markdown-body td,.markdown-body th{padding:12px 7px;line-height:24px}.markdown-body td{min-width:120px}.markdown-body blockquote{color:#666;padding:1px 23px;margin:22px 0;border-left:4px solid #cbcbcb;background-color:#f8f8f8}.markdown-body blockquote:after{display:block;content:""}.markdown-body blockquote>p{margin:10px 0}.markdown-body ol,.markdown-body ul{padding-left:28px}.markdown-body ol li,.markdown-body ul li{margin-bottom:0;list-style:inherit}.markdown-body ol li .task-list-item,.markdown-body ul li .task-list-item{list-style:none}.markdown-body ol li .task-list-item ol,.markdown-body ol li .task-list-item ul,.markdown-body ul li .task-list-item ol,.markdown-body ul li .task-list-item ul{margin-top:0}.markdown-body ol ol,.markdown-body ol ul,.markdown-body ul ol,.markdown-body ul ul{margin-top:3px}.markdown-body ol li{padding-left:6px}.markdown-body .contains-task-list{padding-left:0}.markdown-body .task-list-item{list-style:none}@media (max-width:720px){.markdown-body h2{font-size:24px}.markdown-body h3{font-size:20px}.markdown-body h4{font-size:18px}} .markdown-body pre,.markdown-body pre>code.hljs{color:#333;background:#f8f8f8}.hljs-comment,.hljs-quote{color:#998;font-style:italic}.hljs-keyword,.hljs-selector-tag,.hljs-subst{color:#333;font-weight:700}.hljs-literal,.hljs-number,.hljs-tag .hljs-attr,.hljs-template-variable,.hljs-variable{color:teal}.hljs-doctag,.hljs-string{color:#d14}.hljs-section,.hljs-selector-id,.hljs-title{color:#900;font-weight:700}.hljs-subst{font-weight:400}.hljs-class .hljs-title,.hljs-type{color:#458;font-weight:700}.hljs-attribute,.hljs-name,.hljs-tag{color:navy;font-weight:400}.hljs-link,.hljs-regexp{color:#009926}.hljs-bullet,.hljs-symbol{color:#990073}.hljs-built_in,.hljs-builtin-name{color:#0086b3}.hljs-meta{color:#999;font-weight:700}.hljs-deletion{background:#fdd}.hljs-addition{background:#dfd}.hljs-emphasis{font-style:italic}.hljs-strong{font-weight:700}

谈谈一致性

一致性就是数据保持一致,在分布式系统中,可以理解为多个节点中数据的值是一致的。

  • 强一致性:这种一致性级别是最符合用户直觉的,它要求系统写入什么,读出来的也会是什么,用户体验好,但实现起来往往对系统的性能影响大

  • 弱一致性:这种一致性级别约束了系统在写入成功后,不承诺立即可以读到写入的值,也不承诺多久之后数据能够达到一致,但会尽可能地保证到某个时间级别(比如秒级别)后,数据能够达到一致状态

  • 最终一致性:最终一致性是弱一致性的一个特例,系统会保证在一定时间内,能够达到一个数据一致的状态。这里之所以将最终一致性单独提出来,是因为它是弱一致性中非常推崇的一种一致性模型,也是业界在大型分布式系统的数据一致性上比较推崇的模型

三个经典的缓存模式

缓存可以提升性能、缓解数据库压力,但是使用缓存也会导致数据不一致性的问题。一般我们是如何使用缓存呢?有三种经典的缓存模式:

  • Cache-Aside Pattern

  • Read-Through/Write through

  • Write behind

Cache-Aside Pattern

Cache-Aside Pattern,即旁路缓存模式,它的提出是为了尽可能地解决缓存与数据库的数据不一致问题。

Cache-Aside读流程

Cache-Aside Pattern的读请求流程如下:

Redis与MySQL双写一致性怎么保证  redis 第1张

  1. 读的时候,先读缓存,缓存命中的话,直接返回数据

  2. 缓存没有命中的话,就去读数据库,从数据库取出数据,放入缓存后,同时返回响应。

Cache-Aside 写流程

Cache-Aside Pattern的写请求流程如下:

Redis与MySQL双写一致性怎么保证  redis 第2张

更新的时候,先更新数据库,然后再删除缓存

Read-Through/Write-Through(读写穿透)

Read/Write Through模式中,服务端把缓存作为主要数据存储。应用程序跟数据库缓存交互,都是通过抽象缓存层完成的。

Read-Through

Read-Through的简要流程如下

Redis与MySQL双写一致性怎么保证  redis 第3张

  1. 从缓存读取数据,读到直接返回

  2. 如果读取不到的话,从数据库加载,写入缓存后,再返回响应。

这个简要流程是不是跟Cache-Aside很像呢?其实Read-Through就是多了一层Cache-Provider,流程如下:

Redis与MySQL双写一致性怎么保证  redis 第4张

Read-Through实际只是在Cache-Aside之上进行了一层封装,它会让程序代码变得更简洁,同时也减少数据源上的负载。

Write-Through

Write-Through模式下,当发生写请求时,也是由缓存抽象层完成数据源和缓存数据的更新,流程如下:Redis与MySQL双写一致性怎么保证  redis 第5张

Write behind (异步缓存写入)

Write behindRead-Through/Write-Through有相似的地方,都是由Cache Provider来负责缓存和数据库的读写。它两又有个很大的不同:Read/Write Through是同步更新缓存和数据的,Write Behind则是只更新缓存,不直接更新数据库,通过批量异步的方式来更新数据库。

Redis与MySQL双写一致性怎么保证  redis 第6张

这种方式下,缓存和数据库的一致性不强,对一致性要求高的系统要谨慎使用。但是它适合频繁写的场景,MySQL的InnoDB Buffer Pool机制就使用到这种模式。

操作缓存的时候,删除缓存呢,还是更新缓存?

一般业务场景,我们使用的就是Cache-Aside模式。 有些小伙伴可能会问, Cache-Aside在写入请求的时候,为什么是删除缓存而不是更新缓存呢?

Redis与MySQL双写一致性怎么保证  redis 第7张

我们在操作缓存的时候,到底应该删除缓存还是更新缓存呢?我们先来看个例子:

Redis与MySQL双写一致性怎么保证  redis 第8张

  1. 线程A先发起一个写操作,第一步先更新数据库

  2. 线程B再发起一个写操作,第二步更新了数据库

  3. 由于网络等原因,线程B先更新了缓存

  4. 线程A更新缓存。

这时候,缓存保存的是A的数据(老数据),数据库保存的是B的数据(新数据),数据不一致了,脏数据出现啦。如果是删除缓存取代更新缓存则不会出现这个脏数据问题。

更新缓存相对于删除缓存,还有两点劣势:

  • 如果你写入的缓存值,是经过复杂计算才得到的话。更新缓存频率高的话,就浪费性能啦。

  • 在写数据库场景多,读数据场景少的情况下,数据很多时候还没被读取到,又被更新了,这也浪费了性能呢(实际上,写多的场景,用缓存也不是很划算了)

双写的情况下,先操作数据库还是先操作缓存?

Cache-Aside缓存模式中,有些小伙伴还是有疑问,在写入请求的时候,为什么是先操作数据库呢?为什么不先操作缓存呢?

假设有A、B两个请求,请求A做更新操作,请求B做查询读取操作。Redis与MySQL双写一致性怎么保证  redis 第9张

  1. 线程A发起一个写操作,第一步del cache

  2. 此时线程B发起一个读操作,cache miss

  3. 线程B继续读DB,读出来一个老数据

  4. 然后线程B把老数据设置入cache

  5. 线程A写入DB最新的数据

酱紫就有问题啦,缓存和数据库的数据不一致了。缓存保存的是老数据,数据库保存的是新数据。因此,Cache-Aside缓存模式,选择了先操作数据库而不是先操作缓存。

缓存延时双删

有些小伙伴可能会说,不一定要先操作数据库呀,采用缓存延时双删策略就好啦?什么是延时双删呢?

Redis与MySQL双写一致性怎么保证  redis 第10张

  1. 先删除缓存

  2. 再更新数据库

  3. 休眠一会(比如1秒),再次删除缓存。

这个休眠一会,一般多久呢?都是1秒?

这个休眠时间 =  读业务逻辑数据的耗时 + 几百毫秒。 为了确保读请求结束,写请求可以删除读请求可能带来的缓存脏数据。

删除缓存重试机制

不管是延时双删还是Cache-Aside的先操作数据库再删除缓存,如果第二步的删除缓存失败呢,删除失败会导致脏数据哦~

删除失败就多删除几次呀,保证删除缓存成功呀~ 所以可以引入删除缓存重试机制

Redis与MySQL双写一致性怎么保证  redis 第11张

  1. 写请求更新数据库

  2. 缓存因为某些原因,删除失败

  3. 把删除失败的key放到消息队列

  4. 消费消息队列的消息,获取要删除的key

  5. 重试删除缓存操作

读取biglog异步删除缓存

重试删除缓存机制还可以,就是会造成好多业务代码入侵。其实,还可以通过数据库的binlog来异步淘汰key

Redis与MySQL双写一致性怎么保证  redis 第12张

以mysql为例 可以使用阿里的canal将binlog日志采集发送到MQ队列里面,然后通过ACK机制确认处理这条更新消息,删除缓存,保证数据缓存一致性。

关于“Redis与MySQL双写一致性怎么保证”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“Redis与MySQL双写一致性怎么保证”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注蜗牛博客行业资讯频道。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:niceseo99@gmail.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

评论

有免费节点资源,我们会通知你!加入纸飞机订阅群

×
天气预报查看日历分享网页手机扫码留言评论Telegram