Elasticsearch+Fluentd+Kafka怎么搭建分布式日志系统

蜗牛 互联网技术资讯 2021-12-10 327 0

这期内容当中小编将会给大家带来有关Elasticsearch+Fluentd+Kafka怎么搭建分布式日志系统,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

前言

由于logstash内存占用较大,灵活性相对没那么好,ELK正在被EFK逐步替代.其中本文所讲的EFK是Elasticsearch+Fluentd+Kfka,实际上K应该是Kibana用于日志的展示,这一块不做演示,本文只讲述数据的采集流程.

前提

  1. docker

  2. docker-compose

  3. apache kafka服务

架构

数据采集流程

数据的产生使用cadvisor采集容器的监控数据并将数据传输到Kafka.

数据的传输链路是这样: Cadvospr->Kafka->Fluentd->elasticsearch  

Elasticsearch+Fluentd+Kafka怎么搭建分布式日志系统  fluentd 第1张

每一个服务都可以横向扩展,添加服务到日志系统中.

配置文件

docker-compose.yml

version: "3.7"

services:  elasticsearch:   image: elasticsearch:7.5.1   environment:    - discovery.type=single-node  #使用单机模式启动   ports:    - 9200:9200  cadvisor:    image: google/cadvisor    command: -storage_driver=kafka -storage_driver_kafka_broker_list=192.168.1.60:9092(kafka服务IP:PORT) -storage_driver_kafka_topic=kafeidou    depends_on:      - elasticsearch  fluentd:   image: lypgcs/fluentd-es-kafka:v1.3.2   volumes:    - ./:/etc/fluent    - /var/log/fluentd:/var/log/fluentd

其中:

  1. cadvisor产生的数据会传输到192.168.1.60这台机器的kafka服务,topic为kafeidou

  2. elasticsearch指定为单机模式启动(discovery.type=single-node环境变量),单机模式启动是为了方便实验整体效果

fluent.conf

#<source>
#  type http
#  port 8888
#</source>

<source>
 @type kafka
 brokers 192.168.1.60:9092
 format json
 <topic>
   topic     kafeidou
 </topic>
</source>

<match **>
 @type copy

#  <store>
#   @type stdout
#  </store>

 <store>
 @type elasticsearch
 host 192.168.1.60
 port 9200
 logstash_format true
 #target_index_key machine_name
 logstash_prefix kafeidou
 logstash_dateformat %Y.%m.%d

 flush_interval 10s
 </store>
</match>

其中:

  1. type为copy的插件是为了能够将fluentd接收到的数据复制一份,是为了方便调试,将数据打印在控制台或者存储到文件中,这个配置文件默认关闭了,只提供必要的es输出插件.
    需要时可以将@type stdout这一块打开,调试是否接收到数据.

  2. 输入源也配置了一个http的输入配置,默认关闭,也是用于调试,往fluentd放入数据.
    可以在linux上执行下面这条命令:

    curl -i -X POST -d 'json={"action":"write","user":"kafeidou"}' http://localhost:8888/mytag
  3. target_index_key参数,这个参数是将数据中的某个字段对应的值作为es的索引,例如这个配置文件用的是machine_name这个字段内的值作为es的索引.

开始部署

在包含docker-compose.yml文件和fluent.conf文件的目录下执行:
docker-compose up -d

在查看所有容器都正常工作之后可以查看一下elasticsearch是否生成了预期中的数据作为验证,这里使用查看es的索引是否有生成以及数据数量来验证:

-bash: -: 未找到命令
[root@master kafka]# curl http://192.168.1.60:9200/_cat/indices?v
health status index                                uuid                   pri rep docs.count docs.deleted store.size pri.store.size
yellow open   55a4a25feff6                         Fz_5v3suRSasX_Olsp-4tA   1   1       1            0      4kb            4kb

也可以直接在浏览器输入http://192.168.1.60:9200/_cat/indices?v查看结果,会更方便.

可以看到我这里是用了machine_name这个字段作为索引值,查询的结果是生成了一个叫55a4a25feff6的索引数据,生成了1条数据(docs.count)

到目前为止kafka->fluentd->es这样一个日志收集流程就搭建完成了.

当然了,架构不是固定的.也可以使用fluentd->kafka->es这样的方式进行收集数据.这里不做演示了,无非是修改一下fluentd.conf配置文件,将es和kafka相关的配置做一下对应的位置调换就可以了.

鼓励多看官方文档,在github或fluentd官网上都可以查找到fluentd-es插件和fluentd-kafka插件.

上述就是小编为大家分享的Elasticsearch+Fluentd+Kafka怎么搭建分布式日志系统了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注蜗牛博客行业资讯频道。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:niceseo99@gmail.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

评论

有免费节点资源,我们会通知你!加入纸飞机订阅群

×
天气预报查看日历分享网页手机扫码留言评论Telegram