如何分析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法
本篇文章给大家分享的是有关如何分析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
在进行编译视觉SLAM时,书中提到了ORB、SURF、SIFT提取方法,以及特征提取方法暴力匹配(Brute-Force Matcher)和快速近邻匹配(FLANN)。以及7.9讲述的3D-3D:迭代最近点(Iterative Closest Point,ICP)方法,ICP 的求解方式有两种:利用线性代数求解(主要是SVD),以及利用非线性优化方式求解。
main.cpp
#include <iostream> #include "opencv2/opencv.hpp" #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/highgui.hpp" #include <opencv2/xfeatures2d.hpp> #include <iostream> #include <vector> #include <time.h> #include <chrono> #include <math.h> #include<bits/stdc++.h> using namespace std; using namespace cv; using namespace cv::xfeatures2d; double picture1_size_change=1; double picture2_size_change=1; bool show_picture = true; void extract_ORB2(string picture1, string picture2) { //-- 读取图像 Mat img_1 = imread(picture1, CV_LOAD_IMAGE_COLOR); Mat img_2 = imread(picture2, CV_LOAD_IMAGE_COLOR); assert(img_1.data != nullptr && img_2.data != nullptr); resize(img_1, img_1, Size(), picture1_size_change, picture1_size_change); resize(img_2, img_2, Size(), picture2_size_change, picture2_size_change); //-- 初始化 std::vector<KeyPoint> keypoints_1, keypoints_2; Mat descriptors_1, descriptors_2; Ptr<FeatureDetector> detector = ORB::create(2000,(1.200000048F), 8, 100); Ptr<DescriptorExtractor> descriptor = ORB::create(5000); Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming"); //-- 第一步:检测 Oriented FAST 角点位置 chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); detector->detect(img_1, keypoints_1); detector->detect(img_2, keypoints_2); //-- 第二步:根据角点位置计算 BRIEF 描述子 descriptor->compute(img_1, keypoints_1, descriptors_1); descriptor->compute(img_2, keypoints_2, descriptors_2); chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1); // cout << "extract ORB cost = " << time_used.count() * 1000 << " ms " << endl; cout << "detect " << keypoints_1.size() << " and " << keypoints_2.size() << " keypoints " << endl; if (show_picture) { Mat outimg1; drawKeypoints(img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT); imshow("ORB features", outimg1); } //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 vector<DMatch> matches; // t1 = chrono::steady_clock::now(); matcher->match(descriptors_1, descriptors_2, matches); t2 = chrono::steady_clock::now(); time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1); cout << "extract and match ORB cost = " << time_used.count() * 1000 << " ms " << endl; //-- 第四步:匹配点对筛选 // 计算最小距离和最大距离 auto min_max = minmax_element(matches.begin(), matches.end(), [](const DMatch &m1, const DMatch &m2) { return m1.distance < m2.distance; }); double min_dist = min_max.first->distance; double max_dist = min_max.second->distance; // printf("-- Max dist : %f \n", max_dist); // printf("-- Min dist : %f \n", min_dist); //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. std::vector<DMatch> good_matches; for (int i = 0; i < descriptors_1.rows; i++) { if (matches[i].distance <= max(2 * min_dist, 30.0)) { good_matches.push_back(matches[i]); } } cout << "match " << good_matches.size() << " keypoints " << endl; //-- 第五步:绘制匹配结果 Mat img_match; Mat img_goodmatch; drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match); drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch); if (show_picture) imshow("good matches", img_goodmatch); if (show_picture) waitKey(0); } void extract_SIFT(string picture1, string picture2) { // double t = (double)getTickCount(); Mat temp = imread(picture1, IMREAD_GRAYSCALE); Mat image_check_changed = imread(picture2, IMREAD_GRAYSCALE); if (!temp.data || !image_check_changed.data) { printf("could not load images...\n"); return; } resize(temp, temp, Size(), picture1_size_change, picture1_size_change); resize(image_check_changed, image_check_changed, Size(), picture2_size_change, picture2_size_change); //Mat image_check_changed = Change_image(image_check); //("temp", temp); if (show_picture) imshow("image_check_changed", image_check_changed); int minHessian = 500; // Ptr<SURF> detector = SURF::create(minHessian); // surf Ptr<SIFT> detector = SIFT::create(); // sift vector<KeyPoint> keypoints_obj; vector<KeyPoint> keypoints_scene; Mat descriptor_obj, descriptor_scene; clock_t startTime, endTime; startTime = clock(); chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); // cout << "extract ORB cost = " << time_used.count() * 1000 << " ms " << endl; detector->detectAndCompute(temp, Mat(), keypoints_obj, descriptor_obj); detector->detectAndCompute(image_check_changed, Mat(), keypoints_scene, descriptor_scene); cout << "detect " << keypoints_obj.size() << " and " << keypoints_scene.size() << " keypoints " << endl; // matching FlannBasedMatcher matcher; vector<DMatch> matches; matcher.match(descriptor_obj, descriptor_scene, matches); chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1); cout << "extract and match cost = " << time_used.count() * 1000 << " ms " << endl; //求最小最大距离 double minDist = 1000; double maxDist = 0; //row--行 col--列 for (int i = 0; i < descriptor_obj.rows; i++) { double dist = matches[i].distance; if (dist > maxDist) { maxDist = dist; } if (dist < minDist) { minDist = dist; } } // printf("max distance : %f\n", maxDist); // printf("min distance : %f\n", minDist); // find good matched points vector<DMatch> goodMatches; for (int i = 0; i < descriptor_obj.rows; i++) { double dist = matches[i].distance; if (dist < max(5 * minDist, 1.0)) { goodMatches.push_back(matches[i]); } } //rectangle(temp, Point(1, 1), Point(177, 157), Scalar(0, 0, 255), 8, 0); cout << "match " << goodMatches.size() << " keypoints " << endl; endTime = clock(); // cout << "took time : " << (double)(endTime - startTime) / CLOCKS_PER_SEC * 1000 << " ms" << endl; Mat matchesImg; drawMatches(temp, keypoints_obj, image_check_changed, keypoints_scene, goodMatches, matchesImg, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); if (show_picture) imshow("Flann Matching Result01", matchesImg); // imwrite("C:/Users/Administrator/Desktop/matchesImg04.jpg", matchesImg); //求h std::vector<Point2f> points1, points2; //保存对应点 for (size_t i = 0; i < goodMatches.size(); i++) { //queryIdx是对齐图像的描述子和特征点的下标。 points1.push_back(keypoints_obj[goodMatches[i].queryIdx].pt); //queryIdx是是样本图像的描述子和特征点的下标。 points2.push_back(keypoints_scene[goodMatches[i].trainIdx].pt); } // Find homography 计算Homography,RANSAC随机抽样一致性算法 Mat H = findHomography(points1, points2, RANSAC); //imwrite("C:/Users/Administrator/Desktop/C-train/C-train/result/sift/Image4_SURF_MinHessian1000_ minDist1000_a0.9b70.jpg", matchesImg); vector<Point2f> obj_corners(4); vector<Point2f> scene_corners(4); obj_corners[0] = Point(0, 0); obj_corners[1] = Point(temp.cols, 0); obj_corners[2] = Point(temp.cols, temp.rows); obj_corners[3] = Point(0, temp.rows); //透视变换(把斜的图片扶正) perspectiveTransform(obj_corners, scene_corners, H); //Mat dst; cvtColor(image_check_changed, image_check_changed, COLOR_GRAY2BGR); line(image_check_changed, scene_corners[0], scene_corners[1], Scalar(0, 0, 255), 2, 8, 0); line(image_check_changed, scene_corners[1], scene_corners[2], Scalar(0, 0, 255), 2, 8, 0); line(image_check_changed, scene_corners[2], scene_corners[3], Scalar(0, 0, 255), 2, 8, 0); line(image_check_changed, scene_corners[3], scene_corners[0], Scalar(0, 0, 255), 2, 8, 0); if (show_picture) { Mat outimg1; Mat temp_color = imread(picture1, CV_LOAD_IMAGE_COLOR); drawKeypoints(temp_color, keypoints_obj, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT); imshow("SIFT features", outimg1); } if (show_picture) imshow("Draw object", image_check_changed); // imwrite("C:/Users/Administrator/Desktop/image04.jpg", image_check_changed); // t = ((double)getTickCount() - t) / getTickFrequency(); // printf("averagetime:%f\n", t); if (show_picture) waitKey(0); } void extract_SURF(string picture1, string picture2) { // double t = (double)getTickCount(); Mat temp = imread(picture1, IMREAD_GRAYSCALE); Mat image_check_changed = imread(picture2, IMREAD_GRAYSCALE); if (!temp.data || !image_check_changed.data) { printf("could not load images...\n"); return; } resize(temp, temp, Size(), picture1_size_change, picture1_size_change); resize(image_check_changed, image_check_changed, Size(), picture2_size_change, picture2_size_change); //Mat image_check_changed = Change_image(image_check); //("temp", temp); if (show_picture) imshow("image_check_changed", image_check_changed); int minHessian = 500; Ptr<SURF> detector = SURF::create(minHessian); // surf // Ptr<SIFT> detector = SIFT::create(minHessian); // sift vector<KeyPoint> keypoints_obj; vector<KeyPoint> keypoints_scene; Mat descriptor_obj, descriptor_scene; clock_t startTime, endTime; startTime = clock(); chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); // cout << "extract ORB cost = " << time_used.count() * 1000 << " ms " << endl; detector->detectAndCompute(temp, Mat(), keypoints_obj, descriptor_obj); detector->detectAndCompute(image_check_changed, Mat(), keypoints_scene, descriptor_scene); cout << "detect " << keypoints_obj.size() << " and " << keypoints_scene.size() << " keypoints " << endl; // matching FlannBasedMatcher matcher; vector<DMatch> matches; matcher.match(descriptor_obj, descriptor_scene, matches); chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1); cout << "extract and match cost = " << time_used.count() * 1000 << " ms " << endl; //求最小最大距离 double minDist = 1000; double maxDist = 0; //row--行 col--列 for (int i = 0; i < descriptor_obj.rows; i++) { double dist = matches[i].distance; if (dist > maxDist) { maxDist = dist; } if (dist < minDist) { minDist = dist; } } // printf("max distance : %f\n", maxDist); // printf("min distance : %f\n", minDist); // find good matched points vector<DMatch> goodMatches; for (int i = 0; i < descriptor_obj.rows; i++) { double dist = matches[i].distance; if (dist < max(2 * minDist, 0.15)) { goodMatches.push_back(matches[i]); } } //rectangle(temp, Point(1, 1), Point(177, 157), Scalar(0, 0, 255), 8, 0); cout << "match " << goodMatches.size() << " keypoints " << endl; endTime = clock(); // cout << "took time : " << (double)(endTime - startTime) / CLOCKS_PER_SEC * 1000 << " ms" << endl; Mat matchesImg; drawMatches(temp, keypoints_obj, image_check_changed, keypoints_scene, goodMatches, matchesImg, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); if (show_picture) imshow("Flann Matching Result01", matchesImg); // imwrite("C:/Users/Administrator/Desktop/matchesImg04.jpg", matchesImg); //求h std::vector<Point2f> points1, points2; //保存对应点 for (size_t i = 0; i < goodMatches.size(); i++) { //queryIdx是对齐图像的描述子和特征点的下标。 points1.push_back(keypoints_obj[goodMatches[i].queryIdx].pt); //queryIdx是是样本图像的描述子和特征点的下标。 points2.push_back(keypoints_scene[goodMatches[i].trainIdx].pt); } // Find homography 计算Homography,RANSAC随机抽样一致性算法 Mat H = findHomography(points1, points2, RANSAC); //imwrite("C:/Users/Administrator/Desktop/C-train/C-train/result/sift/Image4_SURF_MinHessian1000_ minDist1000_a0.9b70.jpg", matchesImg); vector<Point2f> obj_corners(4); vector<Point2f> scene_corners(4); obj_corners[0] = Point(0, 0); obj_corners[1] = Point(temp.cols, 0); obj_corners[2] = Point(temp.cols, temp.rows); obj_corners[3] = Point(0, temp.rows); //透视变换(把斜的图片扶正) perspectiveTransform(obj_corners, scene_corners, H); //Mat dst; cvtColor(image_check_changed, image_check_changed, COLOR_GRAY2BGR); line(image_check_changed, scene_corners[0], scene_corners[1], Scalar(0, 0, 255), 2, 8, 0); line(image_check_changed, scene_corners[1], scene_corners[2], Scalar(0, 0, 255), 2, 8, 0); line(image_check_changed, scene_corners[2], scene_corners[3], Scalar(0, 0, 255), 2, 8, 0); line(image_check_changed, scene_corners[3], scene_corners[0], Scalar(0, 0, 255), 2, 8, 0); if (show_picture) { Mat outimg1; Mat temp_color = imread(picture1, CV_LOAD_IMAGE_COLOR); drawKeypoints(temp_color, keypoints_obj, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT); imshow("SURF features", outimg1); } if (show_picture) imshow("Draw object", image_check_changed); // imwrite("C:/Users/Administrator/Desktop/image04.jpg", image_check_changed); // t = ((double)getTickCount() - t) / getTickFrequency(); // printf("averagetime:%f\n", t); if (show_picture) waitKey(0); } void extract_AKAZE(string picture1,string picture2) { //读取图片 Mat temp = imread(picture1,IMREAD_GRAYSCALE); Mat image_check_changed = imread(picture2,IMREAD_GRAYSCALE); //如果不能读到其中任何一张图片,则打印不能下载图片 if(!temp.data || !image_check_changed.data) { printf("could not load iamges...\n"); return; } resize(temp,temp,Size(),picture1_size_change,picture1_size_change); resize(image_check_changed,image_check_changed,Size(),picture2_size_change,picture2_size_change); //Mat image_check_changed = Change_image(image_check); //("temp", temp); if(show_picture) { imshow("image_checked_changed",image_check_changed); } int minHessian=500; Ptr<AKAZE> detector=AKAZE::create();//AKAZE vector<keypoint> keypoints_obj; vector<keypoint> keypoints_scene; Mat descriptor_obj,descriptor_scene; clock_t startTime,endTime; startTime=clock(); chrono::steady_clock::time_point t1=chrono::steady_clock::now(); detector->detectAndCompute(temp,Mat(),keypoints_obj,descriptor_obj); detector->detectAndCompute(image_check_changed,Mat(),keypoints_scene,descriptor_scene); cout<<" detect "<<keypoints_obj.size()<<" and "<<keypoints_scene.size<<" keypoints "<<endl; //matching FlannBasedMatcher matcher; vector<DMatch> matches; matcher.match(descriptor_obj,descriptor_scene,matches); chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2-t1); cout << "extract and match cost = " << time_used.count()*1000<<" ms "<<endl; //求最小最大距离 double minDist = 1000; double max_dist = 0; //row--行 col--列 for(int i=0;i<descriptor_obj.rows;i++) { double dist = match[i].distance; if(dist > maxDist) { maxDist = dist; } if(dist<minDist) { minDist = dist; } } // printf("max distance : %f\n", maxDist); // printf("min distance : %f\n", minDist); // find good matched points vector<DMatch> goodMatches; for(imt i=0;i<descriptor_obj.rows;i++) { double dist = matches[i].distance; if(dist < max(5 * minDist,1.0)) { goodMatches.push_back(matches[i]); } } //rectangle(temp, Point(1, 1), Point(177, 157), Scalar(0, 0, 255), 8, 0); cout<<" match "<<goodMatches.size()<<" keypoints "<<endl; endTime = clock(); // cout << "took time : " << (double)(endTime - startTime) / CLOCKS_PER_SEC * 1000 << " ms" << endl; Mat matchesImg; drawMatches(temp,keypoints_obj,image_check_changed,keypoints_scene,goodMatches, matchesImg,Scalar::all(-1), Scalar::all(-1),vector<char>(),DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); if(show_picture) imshow("Flann Matching Result01",matchesImg); // imwrite("C:/Users/Administrator/Desktop/matchesImg04.jpg", matchesImg); //求h std::vector<Point2f> points1,points2; //保存对应点 for(size_t i = 0;i < goodMatches.size();i++) { //queryIdx是对齐图像的描述子和特征点的下标。 points1.push_back(keypoints_obj[goodMatches[i].queryIdx].pt); //queryIdx是是样本图像的描述子和特征点的下标。 points2.push_back(keypoints_scene[goodMatches[i].trainIdx].pt); } // Find homography 计算Homography,RANSAC随机抽样一致性算法 Mat H = findHomography(points1,points2,RANSAC); //imwrite("C:/Users/Administrator/Desktop/C-train/C-train/result/sift/Image4_SURF_MinHessian1000_ minDist1000_a0.9b70.jpg", matchesImg); vector<Point2f> obj_corners(4); vector<Point2f> scene_corners(4); obj_corners[0] = Point(0,0); obj_corners[0] = Point(temp.count,0); obj_corners[0] = Point(temp.cols,temp.rows); obj_corners[0] = Point(0,temp.rows); //透视变换(把斜的图片扶正) perspectiveTransform(obj_corners,scene_corners,H); //Mat dst cvtColor(image_check_changed,image_check_changed,COLOR_GRAY2BGR); line(image_check_changed,scene_corners[0],scene_corners[1],Scalar(0,0,255),2,8,0); line(image_check_changed,scene_corners[1],scene_corners[2],Scalar(0,0,255),2,8,0); line(image_check_changed,scene_corners[2],scene_corners[3],Scalar(0,0,255),2,8,0); line(image_check_changed,scene_corners[3],scene_corners[0],Scalar(0,0,255),2,8,0); if(show_picture) { Mat outimg1; Mat temp_color = imread(picture1,CV_LOAD_IMAGE_COLOR); drawKeypoints(temp_color,keypoints_obj,outimg1,Scalar::all(-1),DrawMatchesFlags::DEFAULT); imshow("AKAZE features",outimg1); } if(show_picture) waitKey(0); } void extract_ORB(string picture1, string picture2) { Mat img_1 = imread(picture1); Mat img_2 = imread(picture2); resize(img_1, img_1, Size(), picture1_size_change, picture1_size_change); resize(img_2, img_2, Size(), picture2_size_change, picture2_size_change); if (!img_1.data || !img_2.data) { cout << "error reading images " << endl; return ; } vector<Point2f> recognized; vector<Point2f> scene; recognized.resize(1000); scene.resize(1000); Mat d_srcL, d_srcR; Mat img_matches, des_L, des_R; //ORB算法的目标必须是灰度图像 cvtColor(img_1, d_srcL, COLOR_BGR2GRAY);//CPU版的ORB算法源码中自带对输入图像灰度化,此步可省略 cvtColor(img_2, d_srcR, COLOR_BGR2GRAY); Ptr<ORB> d_orb = ORB::create(1500); Mat d_descriptorsL, d_descriptorsR, d_descriptorsL_32F, d_descriptorsR_32F; vector<KeyPoint> keyPoints_1, keyPoints_2; //设置关键点间的匹配方式为NORM_L2,更建议使用 FLANNBASED = 1, BRUTEFORCE = 2, BRUTEFORCE_L1 = 3, BRUTEFORCE_HAMMING = 4, BRUTEFORCE_HAMMINGLUT = 5, BRUTEFORCE_SL2 = 6 Ptr<DescriptorMatcher> d_matcher = DescriptorMatcher::create(NORM_L2); std::vector<DMatch> matches;//普通匹配 std::vector<DMatch> good_matches;//通过keyPoint之间距离筛选匹配度高的匹配结果 clock_t startTime, endTime; startTime = clock(); chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); d_orb -> detectAndCompute(d_srcL, Mat(), keyPoints_1, d_descriptorsL); d_orb -> detectAndCompute(d_srcR, Mat(), keyPoints_2, d_descriptorsR); cout << "detect " << keyPoints_1.size() << " and " << keyPoints_2.size() << " keypoints " << endl; // endTime = clock(); // cout << "took time : " << (double)(endTime - startTime) / CLOCKS_PER_SEC * 1000 << " ms" << endl; d_matcher -> match(d_descriptorsL, d_descriptorsR, matches);//L、R表示左右两幅图像进行匹配 //计算匹配所需时间 chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1); cout << "extract and match cost = " << time_used.count() * 1000 << " ms " << endl; int sz = matches.size(); double max_dist = 0; double min_dist = 100; for (int i = 0; i < sz; i++) { double dist = matches[i].distance; if (dist < min_dist) min_dist = dist; if (dist > max_dist) max_dist = dist; } for (int i = 0; i < sz; i++) { if (matches[i].distance < 0.6*max_dist) { good_matches.push_back(matches[i]); } } cout << "match " << good_matches.size() << " keypoints " << endl; // endTime = clock(); // cout << "took time : " << (double)(endTime - startTime) / CLOCKS_PER_SEC * 1000 << " ms" << endl; //提取良好匹配结果中在待测图片上的点集,确定匹配的大概位置 for (size_t i = 0; i < good_matches.size(); ++i) { scene.push_back(keyPoints_2[ good_matches[i].trainIdx ].pt); } for(unsigned int j = 0; j < scene.size(); j++) cv::circle(img_2, scene[j], 2, cv::Scalar(0, 255, 0), 2); //画出普通匹配结果 Mat ShowMatches; drawMatches(img_1,keyPoints_1,img_2,keyPoints_2,matches,ShowMatches); if (show_picture) imshow("matches", ShowMatches); // imwrite("matches.png", ShowMatches); //画出良好匹配结果 Mat ShowGoodMatches; drawMatches(img_1,keyPoints_1,img_2,keyPoints_2,good_matches,ShowGoodMatches); if (show_picture) imshow("good_matches", ShowGoodMatches); // imwrite("good_matches.png", ShowGoodMatches); //画出良好匹配结果中在待测图片上的点集 if (show_picture) imshow("MatchPoints_in_img_2", img_2); // imwrite("MatchPoints_in_img_2.png", img_2); if (show_picture) waitKey(0); } int main(int argc, char **argv) { string picture1=string(argv[1]); string picture2=string(argv[2]); // string picture1 = "data/picture1/6.jpg"; // string picture2 = "data/picture2/16.PNG"; cout << "\nextract_ORB::" << endl; extract_ORB(picture1, picture2); cout << "\nextract_ORB::" << endl; extract_ORB2(picture1, picture2); cout << "\nextract_SURF::" << endl; extract_SURF(picture1, picture2); cout << "\nextract_AKAZE::" << endl; extract_AKAZE(picture1, picture2); cout << "\nextract_SIFT::" << endl; extract_SIFT(picture1, picture2); cout << "success!!" << endl; }
CMakeLists.txt
CMAKE_MINIMUM_REQUIRED(VERSION 2.8.3) # 设定版本 PROJECT(DescriptorCompare) # 设定工程名 SET(CMAKE_CXX_COMPILER "g++") # 设定编译器 add_compile_options(-std=c++14) #编译选项,选择c++版本 # 设定可执行二进制文件的目录(最后生成的可执行文件放置的目录) SET(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}) set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -fpermissive -g -O3 -Wno-unused-function -Wno-return-type") find_package(OpenCV 3.0 REQUIRED) message(STATUS "Using opencv version ${OpenCV_VERSION}") find_package(Eigen3 3.3.8 REQUIRED) find_package(Pangolin REQUIRED) # 设定链接目录 LINK_DIRECTORIES(${PROJECT_SOURCE_DIR}/lib) # 设定头文件目录 INCLUDE_DIRECTORIES( ${PROJECT_SOURCE_DIR}/include ${EIGEN3_INCLUDE_DIR} ${OpenCV_INCLUDE_DIR} ${Pangolin_INCLUDE_DIRS} ) add_library(${PROJECT_NAME} test.cc ) target_link_libraries( ${PROJECT_NAME} ${OpenCV_LIBS} ${EIGEN3_LIBS} ${Pangolin_LIBRARIES} ) add_executable(main main.cpp ) target_link_libraries(main ${PROJECT_NAME} ) add_executable(icp icp.cpp ) target_link_libraries(icp ${PROJECT_NAME} )
执行效果
./main 1.png 2.png
extract_ORB:: detect 1500 and 1500 keypoints extract and match cost = 21.5506 ms match 903 keypoints extract_ORB:: detect 1304 and 1301 keypoints extract and match ORB cost = 25.4976 ms match 313 keypoints extract_SURF:: detect 915 and 940 keypoints extract and match cost = 53.8371 ms match 255 keypoints extract_SIFT:: detect 1536 and 1433 keypoints extract and match cost = 97.9322 ms match 213 keypoints success!!
ICP
#include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/features2d/features2d.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/calib3d/calib3d.hpp> #include <Eigen/Core> #include <Eigen/Dense> #include <Eigen/Geometry> #include <Eigen/SVD> #include <pangolin/pangolin.h> #include <chrono> using namespace std; using namespace cv; int picture_h=480; int picture_w=640; bool show_picture = true; void find_feature_matches( const Mat &img_1, const Mat &img_2, std::vector<KeyPoint> &keypoints_1, std::vector<KeyPoint> &keypoints_2, std::vector<DMatch> &matches); // 像素坐标转相机归一化坐标 Point2d pixel2cam(const Point2d &p, const Mat &K); void pose_estimation_3d3d( const vector<Point3f> &pts1, const vector<Point3f> &pts2, Mat &R, Mat &t ); int main(int argc, char **argv) { if (argc != 5) { cout << "usage: pose_estimation_3d3d img1 img2 depth2 depth3" << endl; return 1; } //-- 读取图像 Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR); Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR); vector<KeyPoint> keypoints_1, keypoints_2; vector<DMatch> matches; find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches); cout << "picture1 keypoints: " << keypoints_1.size() << " \npicture2 keypoints: " << keypoints_2.size() << endl; cout << "一共找到了 " << matches.size() << " 组匹配点" << endl; // 建立3D点 Mat depth2 = imread(argv[3], CV_8UC1); // 深度图为16位无符号数,单通道图像 Mat depth3 = imread(argv[4], CV_8UC1); // 深度图为16位无符号数,单通道图像 Mat K = (Mat_<double>(3, 3) << 595.2, 0, 328.9, 0, 599.0, 253.9, 0, 0, 1); vector<Point3f> pts1, pts2; for (DMatch m:matches) { int d1 = 255-(int)depth2.ptr<uchar>(int(keypoints_1[m.queryIdx].pt.y))[int(keypoints_1[m.queryIdx].pt.x)]; int d2 = 255-(int)depth3.ptr<uchar>(int(keypoints_2[m.trainIdx].pt.y))[int(keypoints_2[m.trainIdx].pt.x)]; if (d1 == 0 || d2 == 0) // bad depth continue; Point2d p1 = pixel2cam(keypoints_1[m.queryIdx].pt, K); Point2d p2 = pixel2cam(keypoints_2[m.trainIdx].pt, K); float dd1 = int(d1) / 1000.0; float dd2 = int(d2) / 1000.0; pts1.push_back(Point3f(p1.x * dd1, p1.y * dd1, dd1)); pts2.push_back(Point3f(p2.x * dd2, p2.y * dd2, dd2)); } cout << "3d-3d pairs: " << pts1.size() << endl; Mat R, t; pose_estimation_3d3d(pts1, pts2, R, t); //DZQ ADD cv::Mat Pose = (Mat_<double>(4, 4) << R.at<double>(0, 0), R.at<double>(0, 1), R.at<double>(0, 2), t.at<double>(0), R.at<double>(1, 0), R.at<double>(1, 1), R.at<double>(1, 2), t.at<double>(1), R.at<double>(2, 0), R.at<double>(2, 1), R.at<double>(2, 2), t.at<double>(2), 0, 0, 0, 1); cout << "[delete outliers] Matched objects distance: "; vector<double> vDistance; double allDistance = 0; //存储总距离,用来求平均匹配距离,用平均的误差距离来剔除外点 for (int i = 0; i < pts1.size(); i++) { Mat point = Pose * (Mat_<double>(4, 1) << pts2[i].x, pts2[i].y, pts2[i].z, 1); double distance = pow(pow(pts1[i].x - point.at<double>(0), 2) + pow(pts1[i].y - point.at<double>(1), 2) + pow(pts1[i].z - point.at<double>(2), 2), 0.5); vDistance.push_back(distance); allDistance += distance; // cout << distance << " "; } // cout << endl; double avgDistance = allDistance / pts1.size(); //求一个平均距离 int N_outliers = 0; for (int i = 0, j = 0; i < pts1.size(); i++, j++) //i用来记录剔除后vector遍历的位置,j用来记录原位置 { if (vDistance[i] > 1.5 * avgDistance) //匹配物体超过平均距离的N倍就会被剔除 [delete outliers] DZQ FIXED_PARAM { N_outliers++; } } cout << "N_outliers:: " << N_outliers << endl; // show points { //创建一个窗口 pangolin::CreateWindowAndBind("show points", 640, 480); //启动深度测试 glEnable(GL_DEPTH_TEST); // Define Projection and initial ModelView matrix pangolin::OpenGlRenderState s_cam( pangolin::ProjectionMatrix(640, 480, 420, 420, 320, 240, 0.05, 500), //对应的是gluLookAt,摄像机位置,参考点位置,up vector(上向量) pangolin::ModelViewLookAt(0, -5, 0.1, 0, 0, 0, pangolin::AxisY)); // Create Interactive View in window pangolin::Handler3D handler(s_cam); //setBounds 跟opengl的viewport 有关 //看SimpleDisplay中边界的设置就知道 pangolin::View &d_cam = pangolin::CreateDisplay() .SetBounds(0.0, 1.0, 0.0, 1.0, -640.0f / 480.0f) .SetHandler(&handler); while (!pangolin::ShouldQuit()) { // Clear screen and activate view to render into glClearColor(0.97,0.97,1.0, 1); //背景色 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); d_cam.Activate(s_cam); glBegin(GL_POINTS); //绘制匹配点 glLineWidth(5); for (int i = 0; i < pts1.size(); i++) { glColor3f(1, 0, 0); glVertex3d(pts1[i].x,pts1[i].y,pts1[i].z); Mat point = Pose * (Mat_<double>(4, 1) << pts2[i].x, pts2[i].y, pts2[i].z, 1); glColor3f(0, 1, 0); glVertex3d(point.at<double>(0),point.at<double>(1),point.at<double>(2)); } glEnd(); glBegin(GL_LINES); //绘制匹配线 glLineWidth(1); for (int i = 0; i < pts1.size(); i++) { glColor3f(0, 0, 1); glVertex3d(pts1[i].x,pts1[i].y,pts1[i].z); Mat point = Pose * (Mat_<double>(4, 1) << pts2[i].x, pts2[i].y, pts2[i].z, 1); glVertex3d(point.at<double>(0),point.at<double>(1),point.at<double>(2)); } glEnd(); glBegin(GL_POINTS); //绘制所有点 glLineWidth(5); glColor3f(1, 0.5, 0); for (int i = 0; i < picture_h; i+=2) { for (int j = 0; j < picture_w; j+=2) { int d1 = 255-(int)depth2.ptr<uchar>(i)[j]; if (d1 == 0) // bad depth continue; Point2d temp_p; temp_p.y=i; //这里的x和y应该和i j相反 temp_p.x=j; Point2d p1 = pixel2cam(temp_p, K); float dd1 = int(d1) / 1000.0; glVertex3d(p1.x * dd1, p1.y * dd1, dd1); // glVertex3d(j/1000.0, i/1000.0, d1/200.0); } } glEnd(); // Swap frames and Process Events pangolin::FinishFrame(); } } } void find_feature_matches(const Mat &img_1, const Mat &img_2, std::vector<KeyPoint> &keypoints_1, std::vector<KeyPoint> &keypoints_2, std::vector<DMatch> &matches) { //-- 初始化 Mat descriptors_1, descriptors_2; // used in OpenCV3 Ptr<FeatureDetector> detector = ORB::create(2000,(1.200000048F), 8, 100); Ptr<DescriptorExtractor> descriptor = ORB::create(5000); Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming"); //-- 第一步:检测 Oriented FAST 角点位置 detector->detect(img_1, keypoints_1); detector->detect(img_2, keypoints_2); //-- 第二步:根据角点位置计算 BRIEF 描述子 descriptor->compute(img_1, keypoints_1, descriptors_1); descriptor->compute(img_2, keypoints_2, descriptors_2); //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 vector<DMatch> match; // BFMatcher matcher ( NORM_HAMMING ); matcher->match(descriptors_1, descriptors_2, match); //-- 第四步:匹配点对筛选 double min_dist = 10000, max_dist = 0; //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 for (int i = 0; i < descriptors_1.rows; i++) { double dist = match[i].distance; if (dist < min_dist) min_dist = dist; if (dist > max_dist) max_dist = dist; } printf("-- Max dist : %f \n", max_dist); printf("-- Min dist : %f \n", min_dist); //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. for (int i = 0; i < descriptors_1.rows; i++) { if (match[i].distance <= max(2 * min_dist, 30.0)) { matches.push_back(match[i]); } } //-- 第五步:绘制匹配结果 if(show_picture) { Mat img_match; Mat img_goodmatch; drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match); imshow("all matches", img_match); waitKey(0); } } Point2d pixel2cam(const Point2d &p, const Mat &K) { return Point2d( (p.x - K.at<double>(0, 2)) / K.at<double>(0, 0), (p.y - K.at<double>(1, 2)) / K.at<double>(1, 1) ); } void pose_estimation_3d3d(const vector<Point3f> &pts1, const vector<Point3f> &pts2, Mat &R, Mat &t) { Point3f p1, p2; // center of mass int N = pts1.size(); for (int i = 0; i < N; i++) { p1 += pts1[i]; p2 += pts2[i]; } p1 = Point3f(Vec3f(p1) / N); p2 = Point3f(Vec3f(p2) / N); vector<Point3f> q1(N), q2(N); // remove the center for (int i = 0; i < N; i++) { q1[i] = pts1[i] - p1; q2[i] = pts2[i] - p2; } // compute q1*q2^T Eigen::Matrix3d W = Eigen::Matrix3d::Zero(); for (int i = 0; i < N; i++) { W += Eigen::Vector3d(q1[i].x, q1[i].y, q1[i].z) * Eigen::Vector3d(q2[i].x, q2[i].y, q2[i].z).transpose(); } // cout << "W=" << W << endl; // SVD on W Eigen::JacobiSVD<Eigen::Matrix3d> svd(W, Eigen::ComputeFullU | Eigen::ComputeFullV); Eigen::Matrix3d U = svd.matrixU(); Eigen::Matrix3d V = svd.matrixV(); Eigen::Matrix3d R_ = U * (V.transpose()); if (R_.determinant() < 0) { R_ = -R_; } Eigen::Vector3d t_ = Eigen::Vector3d(p1.x, p1.y, p1.z) - R_ * Eigen::Vector3d(p2.x, p2.y, p2.z); // convert to cv::Mat R = (Mat_<double>(3, 3) << R_(0, 0), R_(0, 1), R_(0, 2), R_(1, 0), R_(1, 1), R_(1, 2), R_(2, 0), R_(2, 1), R_(2, 2) ); t = (Mat_<double>(3, 1) << t_(0, 0), t_(1, 0), t_(2, 0)); } void convertRGB2Gray(string picture) { double min; double max; Mat depth_new_1 = imread(picture); // 深度图为16位无符号数,单通道图像 Mat test=Mat(20,256,CV_8UC3); int s; for (int i = 0; i < 20; i++) { std::cout<<i<<" "; Vec3b* p = test.ptr<Vec3b>(i); for (s = 0; s < 32; s++) { p[s][0] = 128 + 4 * s; p[s][1] = 0; p[s][2] = 0; } p[32][0] = 255; p[32][1] = 0; p[32][2] = 0; for (s = 0; s < 63; s++) { p[33+s][0] = 255; p[33+s][1] = 4+4*s; p[33+s][2] = 0; } p[96][0] = 254; p[96][1] = 255; p[96][2] = 2; for (s = 0; s < 62; s++) { p[97 + s][0] = 250 - 4 * s; p[97 + s][1] = 255; p[97 + s][2] = 6+4*s; } p[159][0] = 1; p[159][1] = 255; p[159][2] = 254; for (s = 0; s < 64; s++) { p[160 + s][0] = 0; p[160 + s][1] = 252 - (s * 4); p[160 + s][2] = 255; } for (s = 0; s < 32; s++) { p[224 + s][0] = 0; p[224 + s][1] = 0; p[224 + s][2] = 252-4*s; } } cout<<"depth_new_1 :: "<<depth_new_1.cols<<" "<<depth_new_1.rows<<" "<<endl; Mat img_g=Mat(picture_h,picture_w,CV_8UC1); for(int i=0;i<picture_h;i++) { Vec3b *p = test.ptr<Vec3b>(0); Vec3b *q = depth_new_1.ptr<Vec3b>(i); for (int j = 0; j < picture_w; j++) { for(int k=0;k<256;k++) { if ( (((int)p[k][0] - (int)q[j][0] < 4) && ((int)q[j][0] - (int)p[k][0] < 4))&& (((int)p[k][1] - (int)q[j][1] < 4) && ((int)q[j][1] - (int)p[k][1] < 4))&& (((int)p[k][2] - (int)q[j][2] < 4) && ((int)q[j][2] - (int)p[k][2] < 4))) { img_g.at<uchar>(i,j)=k; } } } } imwrite("14_Depth_3.png", img_g); waitKey(); }
CMakeLists.txt
和上面一样。
./icp 1.png 2.png 1_depth.png 2_depth.png
-- Max dist : 87.000000 -- Min dist : 4.000000 picture1 keypoints: 1304 picture2 keypoints: 1301 一共找到了 313 组匹配点 3d-3d pairs: 313 [delete outliers] Matched objects distance: N_outliers:: 23
执行效果
以上就是如何分析ORB、SURF、SIFT特征点提取方法以及ICP匹配方法,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注蜗牛博客行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:niceseo99@gmail.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。版权声明:如无特殊标注,文章均为本站原创,转载时请以链接形式注明文章出处。
评论